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Shock waves in hereditary elastic media have been studied [i, 2] on the basis of Rabot- 
nov's simplified theory [3] by the small parameter method (the role of the small parameters 
is taken by the hereditary parameters), which was combined with the method of factorization 
of nonlinear operators, the theory of discontinuities, asymptotic methods, etc. 

In the present article we investigate the propagation of a plane shock wave in nonlin- 
ear viscoelastic media characterized by integral and differential viscosity, but without 
assuming that the viscoelastic parameters are small. Two methods of solution are used: i) 
ray tracing [4-9], where the unknown functions after the shock front are represented by 
power series, whose coefficients are jumps of the corresponding order of derivatiwas of the 
displacement; 2) matching of asymptotic solutions [I0]. 

We first consider a nonlinear hereditary elastic medium, i.e., a medium with integral 
viscosity. The equations describing the motion of such a medium in Eulerian variables in 
a Cartesian coordinate system have the form 

t 

= + - K ( t  - t') u,1 ( r )  dr'  + . . . .  ( 1 ) 
o 

~1 = 90(u,(2) + 2//1//1(1 ~ -6 ...). 
Here  o = o l~  i s  t h e  s t r e s s ;  u = u l  i s  t h e  n o n z e r o  c o m p o n e n t  o f  t h e  d i s p l a c e m e n t  v e c t o r ;  k = 

+ 2~; ~ and p are the Lame parameters; ~ = 3(~ + m + n) - (7/2)(X + 2~); ~, m, and n are 
the third-order elastic constants [ii]; U,(k) = 8ku/~tk; U,k = 8ku/Sxk; t is the time; x = 

x i is the coordinate measured along the normal to the boundary of the hereditary elastic 
half-space x > 0; and K(t) is the heredity (elastic memory) kernel. The analogous system 
of equations in Lagrangian variables has been used [12] to describe the evolution of weak 
shock waves. 

Let the boundary x = 0 of the half-space x > 0 be loaded, beginning at time t = 0, in 
such a way that Ulx=g(t ) = g(t) Is(0) = 0, g,l(0) ~ 0, g(t) > 0]. We expand the function 

g(t) in a Maclaurin series with respect to the time t. Then 

u (g (t), t) = .~. n~t ~ ( 2 ) 
k = l  

(n  k d e n o t e s  unknown c o n s t a n t s ) .  As a r e s u l t  o f  t h e  d y n a m i c  i n f l u e n c e  o f  ( 2 ) ,  an  e x t e n s i o n a l  
s h o c k  wave p r o p a g a t e s  i n  t h e  h e r e d i t a r y  e l a s t i c  medium w i t h  v e l o c i t y  G [ 1 3 ] .  We f o r m u l a t e  
the solution after the shock front in the form of a ray series 

u = - -  ~ x k  ~ t - -  ( 3 )  
h=l t--~ ds 

-o-~(-;) 
where x k = [Uc(k)] denotes the jumps of the k-th derivatives of the function u with respect 

to the time t. 

To determine the coefficients • of the ray series (3), we differentiate the first 

equation of the system (i) k times and the second equation (k - i) times with respect to 
t, take their difference on opposite sides of the wave surface Z, and invoke the compatibil- 
ity condition [14] 

[/,,(~-~)] -- - -  G - 1  [/ ,(k)]  + G - 1  ~ [ / , ( h - M  
6t " 
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As a result, we obtain the recursive equation 

F~ •215 . . . . .  • bt ' 6t . . . . .  - ~ ] = 0 ,  k ~ l ,  (4) 

which  e n a b l e s  us t o  c a l c u l a t e  jumps o f  any o r d e r .  From Eq. ( 4 ) ,  f o r  k = 1, we o b t a i n  t h e  
r e l a t i o n  (k + aG- l •  - p0G 2 - P0G• + . . . ) •  = 0, f rom which  we d e t e r m i n e  

G = C(t @ bx I + ...), 

which  c o i n c i d e s  w i t h  t h e  shock  wave v e l o c i t y  in  t h e  e l a s t i c  medium. 
( 2 c )  -1 ,  and c = k l / 2 p 0 - 1 / 2 .  

L e t t i n g  k = 2, 3, . . .  in  Eq. 
each  s t e p ,  we o b t a i n  

If we substitute Eqs. (5) and (6) 

(5) 

Here b = (~ - k)k -I • 

(4) and taking the preceding relation into account in 

~X 1 6h--lXl ) 
•  •  . . . . .  6~k-1 �9 (6)  

in ( 3 ) ,  u se  t h e  r e s u l t i n g  s e r i e s  in  Eq. ( 2 ) ,  and p e r f o r m  
certain algebraic operations, we have 

6~• 
! 

I = Ph (nl, n . . . . . .  n~+~,e,K(O)), (7)  6~ s t~0 " " 

where e 2 = n l c  -1 and K(0) i s  t h e  r e l a x a t i o n  k e r n e l  a t  t = 0. 

The f u n c t i o n a l  r e l a t i o n  (7)  can be used  t o  r e p r e s e n t  • by a power s e r i e s  in  t or  x: 

h=O h'=-O 

and t h e  s u b s t i t u t i o n  o f  Eq. (8)  in  Eqs.  (5)  and (6)  makes i t  p o s s i b l e  t o  c a l c u l a t e  G and 
z k at times close to the start of the deformation process. If we substitute the values 
thus obtained for G and • in Eq. (3) and limit the result to the first two terms of the 
series, after straightforward but tedious calculations we find 

~ _ ~ - - e ( e ) / ( t - - y ) + . ~  _~_1_ e b + l  • --I_8----7+--7--Y t_---~,--e(~)y e(e) ( t - - y ) 2 +  . . . .  (9 )  

where ~ = K(0)(2P0C2) -I is the attenuation coefficient for an extensional shock wave in 
a linear hereditary elastic medium, and 

y (1 bnl [ t +  

e(8)---- ( t _ ~ 2 ) a +  ( t _ e ~ ) :  _ 2 e o . ( I _ 8 2 )  _t_ t - - e  2 7 e2 -ff cb-- I ---77-c --j �9 

Equation (9) was derived with allowance for the fact that 

• ~ + e (e )  t, •  1 + b c +  1 
I - -  e" b• 1 6t " 

R e l a t i o n  (9)  i s  s i m p l i f i e d  somewhat by t h e  n a t u r a l  a s s u m p t i o n  t h a t  ~ i s  s m a l l .  Then 

[ t - - '@+f~ ] .., (10)  u = n  x I l - ( n 2 b + [ j )  y ] ( t - y ) + l  _ ~ +  

where 

From Eq. 

i -- bn l [ bn 1 (%b-t- 6) 7 
Y b,q(n2o +l~) In [1 + x i" 

c ( t - -  b,5)~ _l 

(I0) with ~ = 0 we obtain an expression for the displacement in the elastic medium: 

u = n~(l --  n2bg)(t -- g) + (t/2)n~(l --  n,bg)'l(t -- g)2 + .... 

I - -  bn I [ b2nln2 ] 
g = --vr---- In 1 +  x 

b-nln 2 c (t - -  bnl)2 " 

Let us analyze the behavior of the jump of • i.e., the coefficient of t - y in Eq. 
(i0), as function of the time. We see that • increases with time for $ ~ -bn 2 (b < O) and 
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decays to zero after a finite time interval 0 ~ t ~ t* = ($ + bn2) -I for $ > -bn 2. In other 

words, for B > -bn2 the shock wave is transformed into a weak shock at time t = t*, despite 
the active loading of the half-space, and Eq. (I0) becomes meaningless at t > t*. 

We now consider a nonlinear viscoelastic medium with differential viscosity, the behav- 

ior of which is described by the equation 

O = k U l  + aU~l + 0V,1 + - , .  ( 1 1 )  

(v is the velocity, and @ is the total viscosity coefficient in shear and bulk deformations). 

The foregoing theory of discontinuities can be used to show that a shock wave in the 
form of a surface of discontinuity cannot propagate in a material whose behavior is des- 
cribed by the model (ii), i.e., the ray-tracing method is inapplicable. It will be shown 
below, however, that a structured shock wave, in which the stress and velocities change 
rapidly but continuously, can propagate in such a medium. 

To formulate a solution, we eliminate the stress ~ from Eq. (ii) and from the second 
equation (i) and reduce the result to the dimensionless form 

1 + 2 ( •  s -77+  ~lJ[0? + "  ~ +  7~-'J-- 

- -  ~ ~ ~ as 3 + ~e ~ + 3e 2 ~ + e  3 . . . .  as am as a,n ~ am3 ) L a ~  + 2e-g--d~ ~ ~-77"-d~ + a ~  ] j + O. 

H e r e  we h a v e  i n t r o d u c e d  t h e  d i m e n s i o n l e s s  q u a n t i t i e s :  m = n 2 n l - I C - l ( X  -- c t ) ,  S = n 2 n 1 - 3 / 2  • 
c - 1 / 2 x ,  ~ = n z l / 2 c  - 1 / 2 ,  q = n 2 n l - l k - 1 @ ,  ~ = 2 c b ,  w = n 2 n l - 2 u .  

I n c l u d i n g  two t e r m s  i n  t h e  s e r i e s ,  we w r i t e  t h e  b o u n d a r y  c o n d i t i o n  ( 2 )  i n  t h e  d i m e n -  
s i o n l e s s  f o r m  

(~s - m)~ ~_~ = o. (13) 

In the structured shock wave problem the viscosity coefficient q is assumed to be equal 
to zero everywhere except in a certain thin layer, where q is considered to be small. 

We assume that s is small and seek a solution in the form of an asymptotic series in 
e. Since this representation of the solution is valid only near the boundary, we can dis- 
regard viscosity in formulating the solution. Accordingly, from Eqs. (12) and (13) we 
obtain the outer expansion 

(i)] u , ( s , m ) : w ~ = / o S - - m  + y + e - - ] o S ' + / , s + / o  m - -  m2 + ( 1 4 )  

+ + -- -- m -- 

in which the functions fk(m) (k = O, i, 2, ...) are determined from the conditions of match- 

ing with the inner expansion, which is valid far from the boundary and decays to zero at 
infinity. 

The formulate the inner expansion, we make the change of variable n = gks (where k 
is a certain integer) in Eq. (12). We seek a solution of the transformed equation (12), 
subject to the extinction condition at infinity, in the series form 

2 i w(n,  m) = w ~ w~ + ew~ + ~ w2 + . . .  ( 1 5 )  

I t  c a n  be  shown t h a t  a n o n l i n e a r  s t r u c t u r e  s h o c k  wave  e x i s t s  o n l y  f o r  k = 3 [ i t  d o e s  
n o t  e x i s t  f o r  k = 1 and  f o r  k > 3 ,  a n d  i t  i s  l i n e a r  f o r  k = 2 ,  i . e . ,  t h e  v a r i a b l e s  w i k  (k  = 
O, 1 . . . .  ) o b e y  l i n e a r  e q u a t i o n s ] .  

I f  Eq.  ( 1 5 )  i s  i n s e r t e d  i n t o  Eq.  ( 1 2 )  a f t e r  i t s  t r a n s f o r m a t i o n  by  t h e  s u b s t i t u t i o n  
n = E 3 s ,  t h e  f o l l o w i n g  n o n l i n e a r  e q u a t i o n  m u s t  be  s o l v e d  i n  e a c h  s t e p :  

O'U'h i ( n ,  nl~ lUO, �9 "l v = g h u'l, - wk- t ) ,  ( 1 6 )  
On Om + • Om am ~ Om "~ 
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which we reduce to an inhomogeneous Burgers equation [15] by the substitution v k = • 

~m. Here v = q'2e 2, and the coefficient q is of the order of ~2. 

For the zeroth term of the series (15) the solution of Eq. (16) (~ ~ 0) has the 
form [15] 

2VlnO'~-- t  i [ (m- ~)2 • Fo(~)] d ~ (17)  w 0 = - - - ~  ~ , exp 4~n 2~ 

[F0(~)  i s  an unknown f u n c t i o n ,  which  i s  a l s o  d e t e r m i n e d  f rom t h e  m a tch in g  c o n d i t i o n s ] .  

Using the well-known procedure developed by Van Dyke [16] to match the asymptotic ex- 
pansions (14) and (17), we obtain the equation in dimensioned variables 

n2p 2-• + n~,n['vx-11n(l + • 
2c ~ (I  + xn~c-~x) 

(p = x -- ct). 

Thus, integral viscosity causes the shock wave to be attenuated, and differential vis- 
cosity smears its front, transforming the shock wave into a structured shock wave. 
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